Transport-mediated angiogenesis in 3D epithelial coculture

Increasing interest has focused on capturing the complexity of tissues and organs in vitro as models of human pathophysiological processes. In particular, a need exists for a model that can investigate the interactions in three dimensions (3D) between epithelial tissues and a microvascular network s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2009-07, Vol.23 (7), p.2155-2164
Hauptverfasser: Sudo, Ryo, Chung, Seok, Zervantonakis, Ioannis K, Vickerman, Vernella, Toshimitsu, Yasuko, Griffith, Linda G, Kamm, Roger D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing interest has focused on capturing the complexity of tissues and organs in vitro as models of human pathophysiological processes. In particular, a need exists for a model that can investigate the interactions in three dimensions (3D) between epithelial tissues and a microvascular network since vascularization is vital for reconstructing functional tissues in vitro. Here, we implement a microfluidic platform to analyze angiogenesis in 3D cultures of rat primary hepatocytes and rat/human microvascular endothelial cells (rMVECs/hMVECs). Liver and vascular cells were cultured on each sidewall of a collagen gel scaffold between two microfluidic channels under static or flow conditions. Morphogenesis of 3D hepatocyte cultures was found to depend on diffusion and convection across the nascent tissue. Furthermore, rMVECs formed 3D capillary-like structures that extended across an intervening gel to the hepatocyte tissues in hepatocyte-rMVEC coculture while they formed 2D sheet-like structures in rMVEC monoculture. In addition, diffusion of fluorescent dextran across the gel scaffold was analyzed, demonstrating that secreted proteins from the hepatocytes and MVECs can be exchanged across the gel scaffold by diffusional transport. The experimental approach described here is useful more generally for investigating microvascular networks within 3D engineered tissues with multiple cell types in vitro.--Sudo, R., Chung, S., Zervantonakis, I. K., Vickerman, V., Toshimitsu, Y., Griffith, L. G., Kamm, R. D. Transport-mediated angiogenesis in 3D epithelial coculture.
ISSN:0892-6638
1530-6860
DOI:10.1096/fj.08-122820