Diverse transcription influences can be insulated by the Drosophila SF1 chromatin boundary
Chromatin boundaries regulate gene expression by modulating enhancer-promoter interactions and insulating transcriptional influences from organized chromatin. However, mechanistic distinctions between these two aspects of boundary function are not well understood. Here we show that SF1, a chromatin...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2009-07, Vol.37 (13), p.4227-4233 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chromatin boundaries regulate gene expression by modulating enhancer-promoter interactions and insulating transcriptional influences from organized chromatin. However, mechanistic distinctions between these two aspects of boundary function are not well understood. Here we show that SF1, a chromatin boundary located in the Drosophila Antennapedia complex (ANT-C), can insulate the transgenic miniwhite reporter from both enhancing and silencing effects of surrounding genome, a phenomenon known as chromosomal position effect or CPE. We found that the CPE-blocking activity associates with different SF1 sub-regions from a previously characterized insulator that blocks enhancers in transgenic embryos, and is independent of GAF-binding sites essential for the embryonic insulator activity. We further provide evidence that the CPE-blocking activity cannot be attributed to an enhancer-blocking activity in the developing eye. Our results suggest that SF1 contains multiple non-overlapping activities that block diverse transcriptional influences from embryonic or adult enhancers, and from positive and negative chromatin structure. Such diverse insulating capabilities are consistent with the proposed roles of SF1 to functionally separate fushi tarazu (ftz), a non-Hox gene, from the enhancers and the organized chromatin of the neighboring Hox genes. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gkp362 |