(−)-Epigallocatechin-3-gallate Is a Novel Hsp90 Inhibitor
(−)-Epigallocatechin-3-gallate (EGCG), a major component of green tea, protects against certain types of cancers, although the mechanism has not yet been determined. It was previously demonstrated that EGCG blocks aryl hydrocarbon receptor (AhR)-mediated transcription induced by the potent carcinoge...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2009-01, Vol.48 (2), p.336-345 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | (−)-Epigallocatechin-3-gallate (EGCG), a major component of green tea, protects against certain types of cancers, although the mechanism has not yet been determined. It was previously demonstrated that EGCG blocks aryl hydrocarbon receptor (AhR)-mediated transcription induced by the potent carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Unlike other AhR antagonists that directly bind to the AhR, EGCG inhibits AhR-mediated transcription by binding to hsp90. We hypothesize that EGCG exerts anti-AhR and anticancer effects by acting as an hsp90 inhibitor. Using proteolytic footprinting, immunoprecipitation, and an ATP-agarose pull-down assay, EGCG was found to directly modulate the conformation of hsp90 and bind at or near to a C-terminal ATP binding site. Hsp90 chaperone function, as assessed by its ability to mediate refolding of denatured luciferase, was inhibited by EGCG treatment. Hsp90 dimerization, which occurs at the C-terminal end, was also inhibited by EGCG treatment. Coimmunoprecipitation studies showed that EGCG stabilizes an AhR complex that includes hsp90 and XAP2 (hepatitis B virus X-associated protein 2), and decreases the association of aryl hydrocarbon nuclear translocator (Arnt) with ligand-activated AhR. Thus, EGCG, through its ability to bind to hsp90, blocks AhR response element (AhRE) recognition. These studies indicate a novel mechanism whereby EGCG inhibits ligand-induced AhRE binding and AhR-mediated transcriptional activity. In EGCG-treated human ovarian carcinoma SKOV3 cells, decreased levels of several cancer-related hsp90 client proteins, such as ErbB2, Raf-1 and phospho-AKT, were observed. EGCG also modified the association of hsp90 with several cochaperones. Overall, these data indicate that EGCG is a novel hsp90 inhibitor. Further studies are needed to determine if this has a role in the antitumor actions of EGCG. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi801637q |