MicroRNAs and regeneration: Let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt

MicroRNAs are known to regulate the expression of many mRNAs by binding to complementary target sequences at the 3′UTRs. Because of such properties, miRNAs may regulate tissue-specific mRNAs as a cell undergoes transdifferentiation during regeneration. We have tested this hypothesis during lens and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2007-11, Vol.362 (4), p.940-945
Hauptverfasser: Tsonis, Panagiotis A., Call, Mindy K., Grogg, Matthew W., Sartor, Maureen A., Taylor, Ruth R., Forge, Andrew, Fyffe, Robert, Goldenberg, Robert, Cowper-Sal·lari, Richard, Tomlinson, Craig R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MicroRNAs are known to regulate the expression of many mRNAs by binding to complementary target sequences at the 3′UTRs. Because of such properties, miRNAs may regulate tissue-specific mRNAs as a cell undergoes transdifferentiation during regeneration. We have tested this hypothesis during lens and hair cell regeneration in newts using microarray analysis. We found that distinct sets of miRNAs are associated with lens and hair cell regeneration. Members of the let-7 family are expressed in both events and they are regulated in a similar fashion. All the let-7 members are down regulated during the initiation of regeneration, which is characterized by dedifferentiation of terminally differentiated cells. This is the first report to correlate expression of miRNAs as novel regulators of vertebrate regeneration, alluding to a novel mechanism whereby transdifferentiation occurs.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2007.08.077