Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography
Traditional analysis of spectroscopic optical coherence tomography (SOCT) signals is limited by an uncertainty relationship between time (depth) and frequency (wavelength). The use of a bilinear time-frequency distribution for analysis, such as those that compose Cohen's class of functions, may...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2007-08, Vol.24 (8), p.2186-2195 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional analysis of spectroscopic optical coherence tomography (SOCT) signals is limited by an uncertainty relationship between time (depth) and frequency (wavelength). The use of a bilinear time-frequency distribution for analysis, such as those that compose Cohen's class of functions, may provide a way to avoid this limitation. Here we present the relationship between traditional SOCT analysis and the relevant Cohen class functions: the Wigner and Choi-Williams distributions. While cross terms that arise in these bilinear time-frequency distributions have been viewed as an artifact, here we identify these terms with temporal coherence, which contains significant information about the signal through phase relationships. The utility of time-frequency distributions is illustrated through analysis of calculated signals. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/JOSAA.24.002186 |