An Endogenous TNF-α Antagonist Induced by Splice-switching Oligonucleotides Reduces Inflammation in Hepatitis and Arthritis Mouse Models

Tumor necrosis factor-α (TNF-α) is a key mediator of inflammatory diseases, including rheumatoid arthritis (RA), and anti–TNF-α drugs such as etanercept are effective treatments. Splice-switching oligonucleotides (SSOs) are a new class of drugs designed to induce therapeutically favorable splice var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2008-07, Vol.16 (7), p.1316-1322
Hauptverfasser: Graziewicz, Maria A, Tarrant, Teresa K, Buckley, Brian, Roberts, Jennifer, Fulton, LeShara, Hansen, Henrik, Ørum, Henrik, Kole, Ryszard, Sazani, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor necrosis factor-α (TNF-α) is a key mediator of inflammatory diseases, including rheumatoid arthritis (RA), and anti–TNF-α drugs such as etanercept are effective treatments. Splice-switching oligonucleotides (SSOs) are a new class of drugs designed to induce therapeutically favorable splice variants of targeted genes. In this work, we used locked nucleic acid (LNA)–based SSOs to modulate splicing of TNF receptor 2 (TNFR2) pre-mRNA. The SSO induced skipping of TNFR2 exon 7, which codes the transmembrane domain (TM), switching endogenous expression from the membrane-bound, functional form to a soluble, secreted form (Δ7TNFR2). This decoy receptor protein accumulated in the circulation of treated mice, antagonized TNF-α, and altered disease in two mouse models: TNF-α-induced hepatitis and collagen-induced arthritis (CIA). This is the first report of upregulation of the endogenous, circulating TNF-α antagonist by oligonucleotide-induced splicing modulation.
ISSN:1525-0016
1525-0024
DOI:10.1038/mt.2008.85