High-Density Gene Expression Analysis of Tumor-Associated Macrophages from Mouse Mammary Tumors

Clinical and experimental evidence indicates that tumor-associated macrophages (TAMs) promote malignant progression. In breast cancer, TAMs enhance tumor angiogenesis, tumor cell invasion, matrix remodeling, and immune suppression against the tumor. In this study, we examined late-stage mammary tumo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2009-03, Vol.174 (3), p.1048-1064
Hauptverfasser: Ojalvo, Laureen S, King, William, Cox, Dianne, Pollard, Jeffrey W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clinical and experimental evidence indicates that tumor-associated macrophages (TAMs) promote malignant progression. In breast cancer, TAMs enhance tumor angiogenesis, tumor cell invasion, matrix remodeling, and immune suppression against the tumor. In this study, we examined late-stage mammary tumors from a transgenic mouse model of breast cancer. We used flow cytometry under conditions that minimized gene expression changes to isolate a rigorously defined TAM population previously shown to be associated with invasive carcinoma cells. The gene expression signature of this population was compared with a similar population derived from spleens of non-tumor-bearing mice using high-density oligonucleotide arrays. Using stringent selection criteria, transcript abundance of 460 genes was shown to be differentially regulated between the two populations. Bioinformatic analyses of known functions of these genes indicated that formerly ascribed TAM functions, including suppression of immune activation and matrix remodeling, as well as multiple mediators of tumor angiogenesis, were elevated in TAMs. Further bioinformatic analyses confirmed that a pure and valid TAM gene expression signature in mouse tumors could be used to assess expression of TAMs in human breast cancer. The data derived from these more physiologically relevant autochthonous tumors compared with previous studies in tumor xenografts suggest tactics by which TAMs may regulate tumor angiogenesis and thus provide a basis for exploring other transcriptional mediators of TAM trophic functions within the tumor microenvironment.
ISSN:0002-9440
1525-2191
DOI:10.2353/ajpath.2009.080676