Brucella TIR Domain-containing Protein Mimics Properties of the Toll-like Receptor Adaptor Protein TIRAP
Toll-like receptors (TLRs) play essential roles in the activation of innate immune responses against microbial infections. TLRs and downstream adaptor molecules contain a conserved cytoplasmic TIR domain. TIRAP is a TIR domain-containing adaptor protein that recruits the signaling adaptor MyD88 to a...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-04, Vol.284 (15), p.9892-9898 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Toll-like receptors (TLRs) play essential roles in the activation of innate immune responses against microbial infections. TLRs and downstream adaptor molecules contain a conserved cytoplasmic TIR domain. TIRAP is a TIR domain-containing adaptor protein that recruits the signaling adaptor MyD88 to a subset of TLRs. Many pathogenic microorganisms subvert TLR signaling pathways to suppress host immune responses to benefit their survival and persistence. Brucella encodes a TIR domain-containing protein (TcpB) that inhibits TLR2- and TLR4-mediated NF-κB activation. Sequence analysis indicated a moderate level of similarity between TcpB and the TLR adaptor molecule TIRAP. We found that TcpB could efficiently block TIRAP-induced NF-κB activation. Subsequent studies revealed that by analogy to TIRAP, TcpB interacts with phosphoinositides through its N-terminal domain and colocalizes with the plasma membrane and components of the cytoskeleton. Our findings suggest that TcpB targets the TIRAP-mediated pathway to subvert TLR signaling. In vivo mouse studies indicated that TcpB-deficient Brucella is defective in systemic spread at the early stages of infection. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M805458200 |