Physicochemical Characterization of Efavirenz–Cyclodextrin Inclusion Complexes

Efavirenz (EFV) is an oral antihuman immunodeficiency virus type 1 drug with extremely poor aqueous solubility. Thus, its gastrointestinal absorption is limited by the dissolution rate of the drug. The objective of this study was to characterize the inclusion complexes of EFV with β-cyclodextrin (β-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AAPS PharmSciTech 2009, Vol.10 (1), p.81-87
Hauptverfasser: Sathigari, Sateeshkumar, Chadha, Gurkishan, Lee, Y-H. Phillip, Wright, Nydeia, Parsons, Daniel L., Rangari, Vijay K., Fasina, Oladiran, Babu, R. Jayachandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efavirenz (EFV) is an oral antihuman immunodeficiency virus type 1 drug with extremely poor aqueous solubility. Thus, its gastrointestinal absorption is limited by the dissolution rate of the drug. The objective of this study was to characterize the inclusion complexes of EFV with β-cyclodextrin (β-CD), hydroxypropyl β-CD (HPβCD), and randomly methylated β-CD (RMβCD) to improve the solubility and dissolution of EFV. The inclusion complexation of EFV with cyclodextrins in the liquid state was characterized by phase solubility studies. The solid-state characterization of various EFV and CD systems was performed by X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy analyses. Dissolution studies were carried out in distilled water using US Pharmacopeia dissolution rate testing equipment. Phase solubility studies provided an A L -type solubility diagram for β-CD and A P -type solubility diagram for HPβCD and RMβCD. The phase solubility data enabled calculating stability constants ( K s ) for EFV-βCD, EFV-HPβCD, and EFV-RMβCD systems which were 288, 469, and 1,073 M −1 , respectively. The physical and kneaded mixtures of EFV with CDs generally provided higher dissolution of EFV as expected. The dissolution of EFV was substantially higher with HPβCD and RMβCD inclusion complexes prepared by the freeze drying method. Thus, complexation with HPβCD and RMβCD could possibly improve the dissolution rate-limited absorption of EFV.
ISSN:1530-9932
1530-9932
DOI:10.1208/s12249-008-9180-3