Design, Synthesis, and Biological Evaluation of N-Carboxyphenylpyrrole Derivatives as Potent HIV Fusion Inhibitors Targeting gp41

On the basis of the structures of small-molecule hits targeting the HIV-1 gp41, N-(4-carboxy-3-hydroxy)phenyl-2,5-dimethylpyrrole (2, NB-2), and N-(3-carboxy-4-chloro)phenylpyrrole (A 1 , NB-64), 42 N-carboxyphenylpyrrole derivatives in two categories (A and B series) were designed and synthesized....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2008-12, Vol.51 (24), p.7843-7854
Hauptverfasser: Liu, Kun, Lu, Hong, Hou, Ling, Qi, Zhi, Teixeira, Cátia, Barbault, Florent, Fan, Bo-Tao, Liu, Shuwen, Jiang, Shibo, Xie, Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the basis of the structures of small-molecule hits targeting the HIV-1 gp41, N-(4-carboxy-3-hydroxy)phenyl-2,5-dimethylpyrrole (2, NB-2), and N-(3-carboxy-4-chloro)phenylpyrrole (A 1 , NB-64), 42 N-carboxyphenylpyrrole derivatives in two categories (A and B series) were designed and synthesized. We found that 11 compounds exhibited promising anti-HIV-1 activity at micromolar level and their antiviral activity was correlated with their inhibitory activity on gp41 six-helix bundle formation, suggesting that these compounds block HIV fusion and entry by disrupting gp41 core formation. The structure−activity relationship and molecular docking analysis revealed that the carboxyl group could interact with either Arg579 or Lys574 to form salt bridges and two methyl groups on the pyrrole ring were favorable for interaction with the residues in gp41 pocket. The most active compound, N-(3-carboxy-4-hydroxy)phenyl-2,5-dimethylpyrrole (A 12 ), partially occupied the deep hydrophobic pocket, suggesting that enlarging the molecular size of A 12 could improve its binding affinity and anti-HIV-1 activity for further development as a small-molecule HIV fusion and entry inhibitor.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm800869t