Combination of heterogeneous criteria for the automatic detection of ethical principles on health web sites

The detection of ethical issues of web sites aims at selection of information helpful to the reader and is an important concern in medical informatics. Indeed, with the ever-increasing volume of online health information, coupled with its uneven reliability and quality, the public should be aware ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2007-10, Vol.2007, p.264-268
Hauptverfasser: Gaudinat, Arnaud, Grabar, Natalia, Boyer, Célia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection of ethical issues of web sites aims at selection of information helpful to the reader and is an important concern in medical informatics. Indeed, with the ever-increasing volume of online health information, coupled with its uneven reliability and quality, the public should be aware about the quality of information available online. In order to address this issue, we propose methods for the automatic detection of statements related to ethical principles such as those of the HONcode. For the detection of these statements, we combine two kinds of heterogeneous information: content-based categorizations and URL-based categorizations through application of the machine learning algorithms. Our objective is to observe the quality of categorization through URL's for web pages where categorization through content has been proven to be not precise enough. The results obtained indicate that only some of the principles were better processed.
ISSN:1559-4076