The Secondary Multidrug/Proton Antiporter MdfA Tolerates Displacements of an Essential Negatively Charged Side Chain

The largest family of solute transporters includes ion motive force-driven secondary transporters. Several well characterized solute-specific transport systems in this group have at least one irreplaceable acidic residue that plays a critical role in energy coupling during transport. Previous studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-03, Vol.284 (11), p.6966-6971
Hauptverfasser: Sigal, Nadejda, Fluman, Nir, Siemion, Shira, Bibi, Eitan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The largest family of solute transporters includes ion motive force-driven secondary transporters. Several well characterized solute-specific transport systems in this group have at least one irreplaceable acidic residue that plays a critical role in energy coupling during transport. Previous studies have established the importance of acidic residues in substrate recognition by major facilitator superfamily secondary multidrug transporters, but their role in the transport mechanism remained unknown. We have been investigating the involvement of acidic residues in the mechanism of MdfA, an Escherichia coli secondary multidrug/proton antiporter. We demonstrated that no single negatively charged side chain plays an irreplaceable role in MdfA. Accordingly, we hypothesized that MdfA might be able to utilize at least two acidic residues alternatively. In this study, we present evidence that indeed, unlike solute-specific secondary transporters, MdfA tolerates displacements of an essential negative charge to various locations in the putative drug translocation pathway. The results suggest that MdfA utilizes a proton translocation strategy that is less sensitive to perturbations in the geometry of the proton-binding site, further illustrating the exceptional structural promiscuity of multidrug transporters.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M808877200