Periodic Gene Expression Patterns during the Highly Synchronized Cell Nucleus and Organelle Division Cycles in the Unicellular Red Alga Cyanidioschyzon merolae

Previous cell cycle studies have been based on cell-nuclear proliferation only. Eukaryotic cells, however, have double membranes-bound organelles, such as the cell nucleus, mitochondrion, plastids and single-membrane-bound organelles such as ER, the Golgi body, vacuoles (lysosomes) and microbodies....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA research 2009-02, Vol.16 (1), p.59-72
Hauptverfasser: Fujiwara, Takayuki, Misumi, Osami, Tashiro, Kousuke, Yoshida, Yamato, Nishida, Keiji, Yagisawa, Fumi, Imamura, Sousuke, Yoshida, Masaki, Mori, Toshiyuki, Tanaka, Kan, Kuroiwa, Haruko, Kuroiwa, Tsuneyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous cell cycle studies have been based on cell-nuclear proliferation only. Eukaryotic cells, however, have double membranes-bound organelles, such as the cell nucleus, mitochondrion, plastids and single-membrane-bound organelles such as ER, the Golgi body, vacuoles (lysosomes) and microbodies. Organelle proliferations, which are very important for cell functions, are poorly understood. To clarify this, we performed a microarray analysis during the cell cycle of Cyanidioschyzon merolae. C. merolae cells contain a minimum set of organelles that divide synchronously. The nuclear, mitochondrial and plastid genomes were completely sequenced. The results showed that, of 158 genes induced during the S or G2-M phase, 93 were known and contained genes related to mitochondrial division, ftsZ1-1, ftsz1-2 and mda1, and plastid division, ftsZ2-1, ftsZ2-2 and cmdnm2. Moreover, three genes, involved in vesicle trafficking between the single-membrane organelles such as vps29 and the Rab family protein, were identified and might be related to partitioning of single-membrane-bound organelles. In other genes, 46 were hypothetical and 19 were hypothetical conserved. The possibility of finding novel organelle division genes from hypothetical and hypothetical conserved genes in the S and G2-M expression groups is discussed.
ISSN:1340-2838
1756-1663
DOI:10.1093/dnares/dsn032