Rab2 Utilizes Glyceraldehyde-3-phosphate Dehydrogenase and Protein Kinase Cι to Associate with Microtubules and to Recruit Dynein
Rab2 requires glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and atypical protein kinase Cι (aPKCι) for retrograde vesicle formation from vesicular tubular clusters that sort secretory cargo from recycling proteins returned to the endoplasmic reticulum. However, the precise role of GAPDH and aPKCι...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-02, Vol.284 (9), p.5876-5884 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rab2 requires glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and atypical protein kinase Cι (aPKCι) for retrograde vesicle formation from vesicular tubular clusters that sort secretory cargo from recycling proteins returned to the endoplasmic reticulum. However, the precise role of GAPDH and aPKCι in the early secretory pathway is unclear. GAPDH was the first glycolytic enzyme reported to co-purify with microtubules (MTs). Similarly, aPKC associates directly with MTs. To learn whether Rab2 also binds directly to MTs, a MT binding assay was performed. Purified Rab2 was found in a MT-enriched pellet only when both GAPDH and aPKCι were present, and Rab2-MT binding could be prevented by a recombinant fragment made to the Rab2 amino terminus (residues 2-70), which directly interacts with GAPDH and aPKCι. Because GAPDH binds to the carboxyl terminus of α-tubulin, we characterized the distribution of tyrosinated/detyrosinated α-tubulin that is recruited by Rab2 in a quantitative membrane binding assay. Rab2-treated membranes contained predominantly tyrosinated α-tubulin; however, aPKCι was the limiting and essential factor. Tyrosination/detyrosination influences MT motor protein binding; therefore, we determined whether Rab2 stimulated kinesin or dynein membrane binding. Although kinesin was not detected on membranes incubated with Rab2, dynein was recruited in a dose-dependent manner, and binding was aPKCι-dependent. These combined results suggest a mechanism by which Rab2 controls MT and motor recruitment to vesicular tubular clusters. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M807756200 |