Ag-Catalyzed Diastereo- and Enantioselective Vinylogous Mannich Reactions of α-Ketoimine Esters. Development of a Method and Investigation of its Mechanism

An efficient diastereo- and enantioselective Ag-catalyzed method for additions of a commercially available siloxyfuran to α-ketoimine esters is disclosed. Catalytic transformations require an inexpensive metal salt (AgOAc) and an air stable chiral ligand that is prepared in three steps from commerci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2009-01, Vol.131 (2), p.570-576
Hauptverfasser: Wieland, Laura C, Vieira, Erika M, Snapper, Marc L, Hoveyda, Amir H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An efficient diastereo- and enantioselective Ag-catalyzed method for additions of a commercially available siloxyfuran to α-ketoimine esters is disclosed. Catalytic transformations require an inexpensive metal salt (AgOAc) and an air stable chiral ligand that is prepared in three steps from commercially available materials in 42% overall yield. Aryl- as well as heterocyclic substituted ketoimines can be used effectively in the Ag-catalyzed process. Additionally, two examples regarding reactions of alkyl-substituted ketoimines are presented. An electronically modified N-aryl group is introduced that is responsible for high reaction efficiency (>98% conversion, 72−95% yields after purification) as well as diastereo- (up to >98:2 dr) and enantioselectivity (up to 97:3 er or 94% ee). The new N-aryl unit is crucial for conversion of the asymmetric vinylogous Mannich (AVM) products to the unprotected amines in high yields. Spectroscopic and X-ray data are among the physical evidence provided that shed light on the identity of the Ag-based chiral catalysts and some of the mechanistic subtleties of this class of enantioselective C−C bond forming processes.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja8062315