E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors
Hematopoiesis is a tightly controlled process maintained by a small pool of hematopoietic stem cells (HSCs). Here, we demonstrate that the LT-HSC, MPP, premegakaryocytic/erythroid, Pre CFU-E, Pre GM, MkP, and granulocyte-macrophage compartments were all significantly reduced in E2A-deficient bone ma...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-02, Vol.106 (6), p.1930-1935 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hematopoiesis is a tightly controlled process maintained by a small pool of hematopoietic stem cells (HSCs). Here, we demonstrate that the LT-HSC, MPP, premegakaryocytic/erythroid, Pre CFU-E, Pre GM, MkP, and granulocyte-macrophage compartments were all significantly reduced in E2A-deficient bone marrow. Despite a severe depletion of erythroid progenitors, the erythrocyte and megakaryocyte compartments were equivalent in E2A-deficient bone marrow as compared with wild-type mice. E2A-deficient HSCs also failed to efficiently maintain the HSC pool on serial transplantation, and we demonstrate that the E2A proteins regulate cell cycle progression of HSCs by regulating the expression of p21Cip¹, p27Kip¹, and the thrombopoietin receptor, known regulators of HSC self-renewal activity. Based on these observations, we propose that the E2A proteins promote the developmental progression of the entire spectrum of early hematopoietic progenitors and to suppress an erythroid specific program of gene expression in alternative cell lineages. Last, the data mechanistically link E2A, cell cycle regulators, and the maintenance of the HSC pool in a common pathway. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0808866106 |