Differential Endocannabinoid Regulation of Extinction in Appetitive and Aversive Barnes Maze Tasks

CB[subscript 1] receptor-compromised animals show profound deficits in extinguishing learned behavior from aversive conditioning tasks, but display normal extinction learning in appetitive operant tasks. However, it is difficult to discern whether the differential involvement of the endogenous canna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Learning & memory (Cold Spring Harbor, N.Y.) N.Y.), 2008-11, Vol.15 (11), p.806-809
Hauptverfasser: Harloe, John P, Thorpe, Andrew J, Lichtman, Aron H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CB[subscript 1] receptor-compromised animals show profound deficits in extinguishing learned behavior from aversive conditioning tasks, but display normal extinction learning in appetitive operant tasks. However, it is difficult to discern whether the differential involvement of the endogenous cannabinoid system on extinction results from the hedonics or the required responses associated with the disparate tasks. Here, we report that the CB[subscript 1] receptor antagonist rimonabant disrupts extinction learning in an aversive, but not in an appetitive, Barnes maze conditioning task. Accordingly, these results provide compelling support for the hypothesis that the endogenous cannabinoid system plays a necessary role in the extinction of aversively motivated behaviors but is expendable for appetitively motivated behaviors.
ISSN:1072-0502
1549-5485
DOI:10.1101/lm.1113008