Loss of Hrs in the Central Nervous System Causes Accumulation of Ubiquitinated Proteins and Neurodegeneration

The endosomal sorting complex required for transport (ESCRT) proteins form multimolecular complexes that control multivesicular body formation, endosomal sorting, and transport ubiquitinated membrane proteins (including cell-surface receptors) to the endosomes for degradation. There is accumulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2008-12, Vol.173 (6), p.1806-1817
Hauptverfasser: Tamai, Keiichi, Toyoshima, Masafumi, Tanaka, Nobuyuki, Yamamoto, Noriko, Owada, Yuji, Kiyonari, Hiroshi, Murata, Kazuko, Ueno, Yoshiyuki, Ono, Masao, Shimosegawa, Tooru, Yaegashi, Nobuo, Watanabe, Masahiko, Sugamura, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The endosomal sorting complex required for transport (ESCRT) proteins form multimolecular complexes that control multivesicular body formation, endosomal sorting, and transport ubiquitinated membrane proteins (including cell-surface receptors) to the endosomes for degradation. There is accumulating evidence that endosomal dysfunction is linked to neural cell degeneration in vitro , but little is known about the relationship between neural disorders and ESCRT proteins in vivo . Here we specifically deleted the hrs gene, ESCRT-0, in the neurons of mice by crossing loxP -flanked hrs mice with transgenic mice expressing the synapsin-I Cre protein ( SynI-cre ). Histological analyses revealed that both apoptosis and a loss of hippocampal CA3 pyramidal neurons occurred in the hrsflox/flox ;SynI-cre mice. Notably, the hrsflox/flox ;SynI-cre mice accumulated ubiquitinated proteins, such as glutamate receptors and an autophagy-regulating protein, p62. These molecules are particularly prominent in the hippocampal CA3 neurons and cerebral cortex with advancing age. Accordingly, we found that both locomotor activity and learning ability were severely reduced in the hrsflox/flox ;SynI-cre mice. These data suggest that Hrs plays an important role in neural cell survival in vivo and provide an animal model for neurodegenerative diseases that are known to be commonly affected by the generation of proteinaceous aggregates.
ISSN:0002-9440
1525-2191
DOI:10.2353/ajpath.2008.080684