The Target of Rapamycin Pathway Antagonizes pha-4/FoxA to Control Development and Aging

FoxA factors are critical regulators of embryonic development and postembryonic life, but little is know about the upstream pathways that modulate their activity [1]. C. elegans pha-4 encodes a FoxA transcription factor that is required to establish the foregut in embryos and to control growth and l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2008-09, Vol.18 (18), p.1355-1364
Hauptverfasser: Sheaffer, Karyn L., Updike, Dustin L., Mango, Susan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:FoxA factors are critical regulators of embryonic development and postembryonic life, but little is know about the upstream pathways that modulate their activity [1]. C. elegans pha-4 encodes a FoxA transcription factor that is required to establish the foregut in embryos and to control growth and longevity after birth [2–5]. We previously identified the AAA+ ATPase homolog ruvb-1 as a potent suppressor of pha-4 mutations [6]. Here we show that ruvb-1 is a component of the Target of Rapamycin (TOR) pathway in C. elegans (CeTOR). Both ruvb-1 and let-363/TOR control nucleolar size and promote localization of box C/D snoRNPs to nucleoli, suggesting a role in rRNA maturation. Inactivation of let-363/TOR or ruvb-1 suppresses the lethality associated with reduced pha-4 activity. The CeTOR pathway controls protein homeostasis and also contributes to adult longevity [7, 8]. We find that pha-4 is required to extend adult lifespan in response to reduced CeTOR signaling. Mutations in the predicted CeTOR target rsks-1/S6 kinase or in ife-2/eIF4E also reduce protein biosynthesis and extend lifespan [9–11], but only rsks-1 mutations require pha-4 for adult longevity. In addition, rsks-1, but not ife-2, can suppress the larval lethality associated with pha-4 loss-of-function mutations. The data suggest that pha-4 and the CeTOR pathway antagonize one another to regulate postembryonic development and adult longevity. We suggest a model in which nutrients promote TOR and S6 kinase signaling, which represses pha-4/FoxA, leading to a shorter lifespan. A similar regulatory hierarchy may function in other animals to modulate metabolism, longevity, or disease.
ISSN:0960-9822
1879-0445
DOI:10.1016/j.cub.2008.07.097