Association of MEK5 with ERK5, but not ERK5 kinase activation, inhibits small ubiquitin-related modification of ERK5 kinase (ERK5-SUMOylation), and prevents diabetes-mediated exacerbation of left ventricular dysfunction after myocardial infarction

Diabetes (DM) contributes to the exacerbation of left ventricle (LV) dysfunction after myocardial infarction (MI). Activation of ERK5, an atypical mitogen activated protein kinase with transcriptional activity, inhibits apoptosis and LV dysfunction after doxorubicin treatment. SUMOylation has been p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2008-05, Vol.102 (11), p.1416-1425
Hauptverfasser: Shishido, Tetsuro, Woo, Chang-Hoon, Ding, Bo, McClain, Carolyn, Molina, Carlos A., Yan, Chen, Yang, Jay, Abe, Jun-ichi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetes (DM) contributes to the exacerbation of left ventricle (LV) dysfunction after myocardial infarction (MI). Activation of ERK5, an atypical mitogen activated protein kinase with transcriptional activity, inhibits apoptosis and LV dysfunction after doxorubicin treatment. SUMOylation has been proposed as a negative regulator of various transcription factors. In the current study, we investigated the role of ERK5-SUMOylation in ERK5 transcriptional activity as well as on DM-mediated exacerbation of LV dysfunction and apoptosis after MI. ERK5 wild type transcriptional activity was inhibited by Ubc9 (SUMO E2 conjugase) or PIAS1 (E3 ligase), but not in the ERK5-SUMOylation-site defective mutant (K6R/K22R). H 2 O 2 and high glucose, two well-known mediators of diabetes, induced ERK5-SUMOylation, and the K6R/K22R mutant, dominant negative form of Ubc9, and siRNA-PIAS1 reversed H 2 O 2 -mediated reduction of ERK5 transcriptional activity in cardiomyocytes, indicating the presence of SUMOylation-dependent ERK5 transcriptional repression. Constitutively active form of MEK5α (CA-MEK5α) inhibited ERK5-SUMOylation independent of kinase activity, but dependent on MEK5-ERK5 association. To investigate the pathological role of ERK5-SUMOylation in DM mice after MI, we utilized cardiac specific CA-MEK5α transgenic mice (CA-MEK5α-Tg). MI was induced in streptozotocin (STZ)-injected (DM + MI group) or vehicle-injected mice (MI group) by ligating the left coronary artery. The ERK5-SUMOylation was increased in the DM + MI, but not in the MI group. ERK5-SUMOylation, the exacerbation of LV dysfunction, and the number of TUNEL positive cells in DM + MI was significantly inhibited in CA-MEK5α-Tg mice. Of note, we could not detect any difference of cardiac function after MI in non-diabetic CA-MEK5α-Tg and non-transgenic littermate control mice. These results demonstrated that ERK5 transcriptional activity is subject to down regulation by diabetes-dependent SUMOylation, which resulted in a pro-apoptotic condition contributing to poor post-MI LV function.
ISSN:0009-7330
1524-4571
DOI:10.1161/CIRCRESAHA.107.168138