High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA

MicroRNAs (miRNAs) are an emerging class of small non-coding RNAs implicated in a wide variety of cellular processes. Research in this field is accelerating, and the growing number of miRNAs emphasizes the need for high-throughput and sensitive detection methods. Here we present the successful evalu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2008-12, Vol.36 (21), p.e143-e143
Hauptverfasser: Mestdagh, Pieter, Feys, Tom, Bernard, Nathalie, Guenther, Simone, Chen, Caifu, Speleman, Frank, Vandesompele, Jo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MicroRNAs (miRNAs) are an emerging class of small non-coding RNAs implicated in a wide variety of cellular processes. Research in this field is accelerating, and the growing number of miRNAs emphasizes the need for high-throughput and sensitive detection methods. Here we present the successful evaluation of the Megaplex reverse transcription format of the stem-loop primer-based real-time quantitative polymerase chain reaction (RT-qPCR) approach to quantify miRNA expression. The Megaplex reaction provides simultaneous reverse transcription of 450 mature miRNAs, ensuring high-throughput detection. Further, the introduction of a complementary DNA pre-amplification step significantly reduces the amount of input RNA needed, even down to single-cell level. To evaluate possible pre-amplification bias, we compared the expression of 384 miRNAs in three different cancer cell lines with Megaplex RT, with or without an additional pre-amplification step. The normalized Cq values of all three sample pairs showed a good correlation with maintenance of differential miRNA expression between the cell lines. Moreover, pre-amplification using 10 ng of input RNA enabled the detection of miRNAs that were undetectable when using Megaplex alone with 400 ng of input RNA. The high specificity of RT-qPCR together with a superior sensitivity makes this approach the method of choice for high-throughput miRNA expression profiling.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkn725