A combined therapeutic approach for pyruvate dehydrogenase deficiency using self-complementary adeno-associated virus serotype-specific vectors and dichloroacetate
We determined the ability of self-complementary adeno-associated virus (scAAV) vectors to deliver and express the pyruvate dehydrogenase E1α subunit gene (PDHA1) in primary cultures of skin fibroblasts from 3 patients with defined mutations in PHDA1 and 3 healthy subjects. Cells were transduced with...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and metabolism 2008-04, Vol.93 (4), p.381-387 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determined the ability of self-complementary adeno-associated virus (scAAV) vectors to deliver and express the pyruvate dehydrogenase E1α subunit gene (PDHA1) in primary cultures of skin fibroblasts from 3 patients with defined mutations in PHDA1 and 3 healthy subjects. Cells were transduced with scAAV vectors containing the cytomegalovirus promoter-driven enhanced green fluorescent protein (EGFP) reporter gene at a vector:cell ratio of 200. Transgene expression was measured 72
h later. The transduction efficiency of scAAV2 and scAAV6 vectors was 3- to 5-fold higher than that of the other serotypes, which were subsequently used to transduce fibroblasts with wild-type PDHA1 cDNA under the control of the chicken beta-action (CBA) promoter at a vector:cell ratio of 1000. Total PDH-specific activity and E1α protein expression were determined 10 days post-transduction. Both vectors increased E1α expression 40–60% in both control and patient cells, and increased PDH activity in two patient cell lines. We also used dichloroacetate (DCA) to maximally activate PDH through dephosphorylation of E1α. Exposure for 24
h to 5
mM DCA increased PDH activity in non-transduced control (mean 37% increase) and PDH deficient (mean 44% increase) cells. Exposure of transduced patient fibroblasts to DCA increased PDH activity up to 90% of the activity measured in untreated control cells. DCA also increased expression of E1α protein and, to variable extents, that of other components of the PDH complex in both non-transduced and transduced cells. These data suggest that a combined gene delivery and pharmacological approach may hold promise for the treatment of PDH deficiency. |
---|---|
ISSN: | 1096-7192 1096-7206 |
DOI: | 10.1016/j.ymgme.2007.10.131 |