Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients

We studied motor representation in well-recovered stroke patients. Eighteen right-handed stroke patients and eleven age-matched control subjects underwent functional Magnetic Resonance Imaging (fMRI) while performing unimanual index finger (abduction–adduction) and wrist movements (flexion–extension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2007-01, Vol.34 (1), p.253-263
Hauptverfasser: Nair, Dinesh G., Hutchinson, Siobhan, Fregni, Felipe, Alexander, Michael, Pascual-Leone, Alvaro, Schlaug, Gottfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied motor representation in well-recovered stroke patients. Eighteen right-handed stroke patients and eleven age-matched control subjects underwent functional Magnetic Resonance Imaging (fMRI) while performing unimanual index finger (abduction–adduction) and wrist movements (flexion–extension) using their recovered and non-affected hand. A subset of these patients underwent Transcranial Magnetic Stimulation (TMS) to elicit motor evoked potentials (MEP) in the first dorsal interosseous muscle of both hands. Imaging results suggest that good recovery utilizes both ipsi- and contralesional resources, although results differ for wrist and index finger movements. Wrist movements of the recovered arm resulted in significantly greater activation of the contralateral (lesional) and ipsilateral (contralesional) primary sensorimotor cortex (SM1), while comparing patients to control subjects performing the same task. In contrast, recovered index finger movements recruited a larger motor network, including the contralateral SM1, Supplementary Motor Area (SMA) and cerebellum when patients were compared to control subjects. TMS of the lesional hemisphere but not of the contralesional hemisphere induced MEPs in the recovered hand. TMS parameters also revealed greater transcallosal inhibition, from the contralesional to the lesional hemisphere than in the reverse direction. Disinhibition of the contralesional hemisphere observed in a subgroup of our patients suggests persistent alterations in intracortical and transcallosal (interhemispheric) interactions, despite complete functional recovery.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2006.09.010