Prolonged increases in vein wall tension increase matrix metalloproteinases and decrease constriction in rat vena cava: Potential implications in varicose veins

Background Increased venous hydrostatic pressure plays a role in the pathogenesis of varicose veins. Increased expression of matrix metalloproteinases (MMPs) has been identified in varicose veins. Also, we have shown that MMP-2 inhibits venous contraction. However, the relation between venous pressu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vascular surgery 2008-08, Vol.48 (2), p.447-456
Hauptverfasser: Raffetto, Joseph D., MD, Qiao, Xiaoying, MD, PhD, Koledova, Vera V., MD, PhD, Khalil, Raouf A., MD, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Increased venous hydrostatic pressure plays a role in the pathogenesis of varicose veins. Increased expression of matrix metalloproteinases (MMPs) has been identified in varicose veins. Also, we have shown that MMP-2 inhibits venous contraction. However, the relation between venous pressure, MMP expression, and venous dysfunction is unclear. The purpose of this study was to test the hypothesis that prolonged increases in venous wall tension cause overexpression of MMPs and decreased contractility, which in turn promote venous dilation. Methods Circular segments of inferior vena cava (IVC) were isolated from male Sprague-Dawley rats and suspended between two wires in Krebs solution. Preliminary vein wall tension-contraction relation showed maximal potassium chloride (KCl) (96 mmol/L) contraction at 0.5 g basal tension, which remained steady with increases in tension up to 2 g. Vein segments were subjected to either control (0.5 g) or high (2 g) basal tension for short (1 hour) or long duration (24 hours). Isometric contraction in response to phenylephrine (Phe, 10−5 mol/L), angiotensin II (AngII, 10−6 mol/L), and KCl was measured. The veins were frozen to determine the expression and localization of MMPs using immunoblots and immunohistochemistry. Results In IVC segments subjected to 0.5 g tension for 1 hour, Phe and AngII produced significant contraction. At higher 2 g basal tension for 24 hours, both Phe and AngII contractions were significantly reduced. Reduction in KCl contraction was also observed at high 2 g basal tension for 24 hours, suggesting that the reduction in vein contraction is not specific to a particular receptor, and likely involves inhibition of a post-receptor contraction mechanism. In vein segments under 2 g tension for 24 hours and treated with TIMP-1, Phe, AngII, and KCl contractions were partially restored, suggesting the involvement of MMPs. IVC immunoblot analysis demonstrated prominent bands corresponding to MMP-2 and MMP-9 protein. High 2 g wall tension for 24 hours was associated with marked increase in the amount of MMP-2 and -9 relative to the housekeeping protein actin. There was a correlation between MMP expression and decreased vein contraction. Also, significant increases in MMP-2 and -9 immunostaining were observed in IVC segments subjected to high 2 g tension for 24 hours. Both MMP-2 and MMP-9 caused significant inhibition of Phe contraction in IVC segments. Conclusions In rat IVC, increases in magnitude and
ISSN:0741-5214
1097-6809
DOI:10.1016/j.jvs.2008.03.004