uPA impairs cerebrovasodilation after hypoxia/ischemia through LRP and ERK MAPK

Abstract We have previously observed that soluble urokinase plasminogn activator receptor (suPAR) prevents impairment of cerebrovasodilation induced by hypercapnia and hypotension after hypoxia/ischemia (H/I) in the newborn pig. In this study, we investigated the role of low-density lipoprotein-rela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2008-09, Vol.1231, p.121-131
Hauptverfasser: Armstead, William M, Cines, Douglas B, Bdeir, Khalil, Kulikovskaya, Irina, Stein, Sherman C, Higazi, Abd Al-Roof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We have previously observed that soluble urokinase plasminogn activator receptor (suPAR) prevents impairment of cerebrovasodilation induced by hypercapnia and hypotension after hypoxia/ischemia (H/I) in the newborn pig. In this study, we investigated the role of low-density lipoprotein-related protein (LRP) receptor and the ERK isoform of mitogen activated protein kinase (MAPK) in uPA-mediated impairment of vasodilation after H/I in piglets equipped with a closed cranial window. CSF uPA increased from 9 ± 2 to 52 ± 8 and 140 ± 21 ng/ml at 1 and 4 h after H/I, respectively. The LRP antagonist receptor associated protein (RAP) and anti-LRP antibody blunted the increase in CSF uPA at 1 h (17 ± 2 ng/ml) but not 4 h post insult. uPA detectable in sham-treated cortex by immunhistochemistry was markedly elevated 4 h after H/I. Phosphorylation (activation) of CSF ERK MAPK was detected at 1 and 4 h post H/I and blocked by RAP. Exogenous uPA administered at 4 h post H/I further stimulated ERK MAPK phosphorylation, which was blocked by RAP. Pre-treatment of piglets with RAP, anti-LRP, and suPAR completely prevented, and the ERK MAPK antagonist U 0126 partially prevented, impaired responses to hypotension and hypercapnia post H/I, but none of these antagonists affected the response to isoproterenol. These data indicate that uPA is upregulated after H/I through an LRP-dependent process and that the released uPA impairs hypercapnic and hypotensive dilation through an LRP- and ERK MAPK dependent pathway. These data suggest that modulation of uPA upregulation and/or uPA-mediated signal transduction may preserve cerebrohemodynamic control after hypoxia/ischemia.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2008.06.115