Measurements of the BKCa channel's high-affinity Ca2+ binding constants: effects of membrane voltage
It has been established that the large conductance Ca(2+)-activated K(+) channel contains two types of high-affinity Ca(2+) binding sites, termed the Ca(2+) bowl and the RCK1 site. The affinities of these sites, and how they change as the channel opens, is still a subject of some debate. Previous es...
Gespeichert in:
Veröffentlicht in: | The Journal of general physiology 2008-11, Vol.132 (5), p.491-505 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been established that the large conductance Ca(2+)-activated K(+) channel contains two types of high-affinity Ca(2+) binding sites, termed the Ca(2+) bowl and the RCK1 site. The affinities of these sites, and how they change as the channel opens, is still a subject of some debate. Previous estimates of these affinities have relied on fitting a series of conductance-voltage relations determined over a series of Ca(2+) concentrations with models of channel gating that include both voltage sensing and Ca(2+) binding. This approach requires that some model of voltage sensing be chosen, and differences in the choice of voltage-sensing model may underlie the different estimates that have been produced. Here, to better determine these affinities we have measured Ca(2+) dose-response curves of channel activity at constant voltage for the wild-type mSlo channel (minus its low-affinity Ca(2+) binding site) and for channels that have had one or the other Ca(2+) binding site disabled via mutation. To accurately determine these dose-response curves we have used a series of 22 Ca(2+) concentrations, and we have used unitary current recordings, coupled with changes in channel expression level, to measure open probability over five orders of magnitude. Our results indicate that at -80 mV the Ca(2+) bowl has higher affinity for Ca(2+) than does the RCK1 site in both the opened and closed conformations of the channel, and that the binding of Ca(2+) to the RCK1 site is voltage dependent, whereas at the Ca(2+) bowl it is not. |
---|---|
ISSN: | 0022-1295 1540-7748 |
DOI: | 10.1085/jgp.200810094 |