Coevolution of Function and the Folding Landscape: Correlation with Density of Native Contacts

The relationship between the folding landscape and function of evolved proteins is explored by comparison of the folding mechanisms for members of the flavodoxin fold. CheY, Spo0F, and NtrC have unrelated functions and low sequence homology but share an identical topology. Recent coarse-grained simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2008-11, Vol.95 (9), p.L57-L59
Hauptverfasser: Hills, Ronald D., Brooks, Charles L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relationship between the folding landscape and function of evolved proteins is explored by comparison of the folding mechanisms for members of the flavodoxin fold. CheY, Spo0F, and NtrC have unrelated functions and low sequence homology but share an identical topology. Recent coarse-grained simulations show that their folding landscapes are uniquely tuned to properly suit their respective biological functions. Enhanced packing in Spo0F and its limited conformational dynamics compared to CheY or NtrC lead to frustration in its folding landscape. Simulation as well as experimental results correlate with the local density of native contacts for these and a sample of other proteins. In particular, protein regions of low contact density are observed to become structured late in folding; concomitantly, these dynamic regions are often involved in binding or conformational rearrangements of functional importance. These observations help to explain the widespread success of Gomacr;-like coarse-grained models in reproducing protein dynamics.
ISSN:0006-3495
1542-0086
DOI:10.1529/biophysj.108.143388