Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase
Eribulin (E7389), a synthetic analogue of halichondrin B in phase III clinical trials for breast cancer, binds to tubulin and microtubules. At low concentrations, it suppresses the growth phase of microtubule dynamic instability in interphase cells, arrests mitosis, and induces apoptosis, suggesting...
Gespeichert in:
Veröffentlicht in: | Molecular cancer therapeutics 2008-07, Vol.7 (7), p.2003-2011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eribulin (E7389), a synthetic analogue of halichondrin B in phase III clinical trials for breast cancer, binds to tubulin
and microtubules. At low concentrations, it suppresses the growth phase of microtubule dynamic instability in interphase cells,
arrests mitosis, and induces apoptosis, suggesting that suppression of spindle microtubule dynamics induces mitotic arrest.
To further test this hypothesis, we measured the effects of eribulin on dynamics of centromeres and their attached kinetochore
microtubules by time-lapse confocal microscopy in living mitotic U-2 OS human osteosarcoma cells. Green fluorescent protein–labeled
centromere-binding protein B marked centromeres and kinetochore-microtubule plus-ends. In control cells, sister chromatid
centromere pairs alternated under tension between increasing and decreasing separation (stretching and relaxing). Eribulin
suppressed centromere dynamics at concentrations that arrest mitosis. At 60 nmol/L eribulin (2 × mitotic IC 50 ), the relaxation rate was suppressed 21%, the time spent paused increased 67%, and dynamicity decreased 35% (but without
reduction in mean centromere separation), indicating that eribulin decreased normal microtubule-dependent spindle tension
at the kinetochores, preventing the signal for mitotic checkpoint passage. We also examined a more potent, but in tumors less
efficacious antiproliferative halichondrin derivative, ER-076349. At 2 × IC 50 (4 nmol/L), mitotic arrest also occurred in concert with suppressed centromere dynamics. Although media IC 50 values differed 15-fold between the two compounds, the intracellular concentrations were similar, indicating more extensive
relative uptake of ER-076349 into cells compared with eribulin. The strong correlation between suppression of kinetochore-microtubule
dynamics and mitotic arrest indicates that the primary mechanism by which eribulin blocks mitosis is suppression of spindle
microtubule dynamics. [Mol Cancer Ther 2008;7(7):2003–11] |
---|---|
ISSN: | 1535-7163 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-08-0095 |