Robust postmortem survival of murine vestibular and cochlear stem cells

Potential treatment strategies of neurodegenerative and other diseases with stem cells derived from nonembryonic tissues are much less subjected to ethical criticism than embryonic stem cell-based approaches. Here we report the isolation of inner ear stem cells, which may be useful in cell replaceme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Association for Research in Otolaryngology 2007-06, Vol.8 (2), p.194-204
Hauptverfasser: Senn, Pascal, Oshima, Kazuo, Teo, Dawn, Grimm, Christian, Heller, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Potential treatment strategies of neurodegenerative and other diseases with stem cells derived from nonembryonic tissues are much less subjected to ethical criticism than embryonic stem cell-based approaches. Here we report the isolation of inner ear stem cells, which may be useful in cell replacement therapies for hearing loss, after protracted postmortem intervals. We found that neonatal murine inner ear tissues, including vestibular and cochlear sensory epithelia, display remarkably robust cellular survival, even 10 days postmortem. Similarly, isolation of sphere-forming stem cells was possible up to 10 days postmortem. We detected no difference in the proliferation and differentiation potential between stem cells isolated directly after death and up to 5 days postmortem. At longer postmortem intervals, we observed that the potency of sphere-derived cells to spontaneously differentiate into mature cell types diminishes prior to the cells losing their potential for self-renewal. Three-week-old mice also displayed sphere-forming stem cells in all inner ear tissues investigated up to 5 days postmortem. In summary, our results demonstrate that postmortem murine inner ear tissue is suited for isolation of stem cells.
ISSN:1525-3961
1438-7573
DOI:10.1007/s10162-007-0079-6