Evidence that Cisplatin-induced Auditory Damage is Attenuated by Downregulation of Pro-inflammatory Cytokines Via Nrf2/HO-1
Recently, we demonstrated that pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 played a critical role in cisplatin-induced cochlear injury and that flunarizine, known as a T-type Ca 2+ channel antagonist, induced a cytoprotective effect against cisplatin cytotoxicity in HEI-OC1 cells by th...
Gespeichert in:
Veröffentlicht in: | Journal of the Association for Research in Otolaryngology 2008-09, Vol.9 (3), p.290-306 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, we demonstrated that pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 played a critical role in cisplatin-induced cochlear injury and that flunarizine, known as a T-type Ca
2+
channel antagonist, induced a cytoprotective effect against cisplatin cytotoxicity in HEI-OC1 cells by the activation of NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) cascade through PI3K-Akt signaling but calcium-independent pathway. We report here that flunarizine markedly attenuates cisplatin-induced pro-inflammatory cytokine secretion and their messenger RNA transcription as well as cisplatin cytotoxicity through the activation of Nrf2/HO-1 and downregulation of NF-κB. In HEI-OC1 cells, overexpression of Nrf2/HO-1 by gene transfer or pharmacological approaches attenuated cisplatin-induced cytotoxicity and pro-inflammatory cytokine production. On the contrary, inhibition of Nrf2/HO-1 signaling by pharmacological inhibitors or specific small interfering RNAs significantly abolished the beneficial effects of flunarizine. Flunarizine also attenuated cisplatin-mediated MAPK activation and pharmacological inhibition of MAPKs, especially MEK1/ERK, blocked cisplatin-induced NF-κB activation in HEI-OC1 cells
.
Furthermore, WT-Nrf2 overexpression effectively blocked MAPK activation after cisplatin exposure. Finally, orally administrated Sibelium™, the trade name of flunarizine, suppressed the increase of pro-inflammatory cytokines by cisplatin in both serum and cochleas of mice, whereas it increased HO-1 expression in cochleas
.
These results indicate that flunarizine induces a protective effect against cisplatin ototoxicity through the downregulation of NF-κB by Nrf2/HO-1 activation and the resulting inhibition of pro-inflammatory cytokine production in vitro and in vivo. |
---|---|
ISSN: | 1525-3961 1438-7573 |
DOI: | 10.1007/s10162-008-0126-y |