Microfluidic Tissue Model for Live Cell Screening

We have developed a microfluidic platform modeled after the physiologic microcirculation for multiplexed tissue‐like culture and high‐throughput analysis. Each microfabricated culture unit consisted of three functional components: a 50 μm wide cell culture pocket, an artificial endothelial barrier w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2007-07, Vol.23 (4), p.946-951
Hauptverfasser: Lee, Philip J., Gaige, Terry A., Ghorashian, Navid, Hung, Paul J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a microfluidic platform modeled after the physiologic microcirculation for multiplexed tissue‐like culture and high‐throughput analysis. Each microfabricated culture unit consisted of three functional components: a 50 μm wide cell culture pocket, an artificial endothelial barrier with 2 μm pores, and a nutrient transport channel. This configuration enabled a high density of cancer cells to be maintained for over 1 week in a solid tumor‐like morphology when fed with continuous flow. The microfluidic chip contained 16 parallel units for “flow cell” based experiments where live cells were exposed to a soluble factor and analyzed via fluorescence microscopy or flow‐through biochemistry. Each fluidically independent tissue unit contained ∼500 cells fed with a continuous flow of 10 nL/min. As a demonstration, the toxicity profile of the anti‐cancer drug paclitaxel was collected on HeLa cells cultured in the microfluidic format and compared with a 384‐well dish for up to 5 days of continuous drug exposure.
ISSN:8756-7938
1520-6033
DOI:10.1021/bp070053l