Interleukin-6 regulates pancreatic α-cell mass expansion

Interleukin-6 (IL-6) is systemically elevated in obesity and is a predictive factor to develop type 2 diabetes. Pancreatic islet pathology in type 2 diabetes is characterized by reduced β-cell function and mass, an increased proportion of α-cells relative to β-cells, and α-cell dysfunction. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (35), p.13163-13168
Hauptverfasser: Ellingsgaard, Helga, Ehses, Jan A, Hammar, Eva B, Van Lommel, Leentje, Quintens, Roel, Martens, Geert, Kerr-Conte, Julie, Pattou, Francois, Berney, Thierry, Pipeleers, Daniel, Halban, Philippe A, Schuit, Frans C, Donath, Marc Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interleukin-6 (IL-6) is systemically elevated in obesity and is a predictive factor to develop type 2 diabetes. Pancreatic islet pathology in type 2 diabetes is characterized by reduced β-cell function and mass, an increased proportion of α-cells relative to β-cells, and α-cell dysfunction. Here we show that the α cell is a primary target of IL-6 actions. Beginning with investigating the tissue-specific expression pattern of the IL-6 receptor (IL-6R) in both mice and rats, we find the highest expression of the IL-6R in the endocrine pancreas, with highest expression on the α-cell. The islet IL-6R is functional, and IL-6 acutely regulates both pro-glucagon mRNA and glucagon secretion in mouse and human islets, with no acute effect on insulin secretion. Furthermore, IL-6 stimulates α-cell proliferation, prevents apoptosis due to metabolic stress, and regulates α-cell mass in vivo. Using IL-6 KO mice fed a high-fat diet, we find that IL-6 is necessary for high-fat diet-induced increased α-cell mass, an effect that occurs early in response to diet change. Further, after high-fat diet feeding, IL-6 KO mice without expansion of α-cell mass display decreased fasting glucagon levels. However, despite these α-cell effects, high-fat feeding of IL-6 KO mice results in increased fed glycemia due to impaired insulin secretion, with unchanged insulin sensitivity and similar body weights. Thus, we conclude that IL-6 is necessary for the expansion of pancreatic α-cell mass in response to high-fat diet feeding, and we suggest that this expansion may be needed for functional β-cell compensation to increased metabolic demand.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0801059105