Generation of Monomeric Reversibly Switchable Red Fluorescent Proteins for Far-Field Fluorescence Nanoscopy

Reversibly switchable fluorescent proteins (RSFPs) are GFP-like proteins that may be repeatedly switched by irradiation with light from a fluorescent to a nonfluorescent state, and vice versa. They can be utilized as genetically encodable probes and bear large potential for a wide array of applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2008-09, Vol.95 (6), p.2989-2997
Hauptverfasser: Stiel, Andre C., Andresen, Martin, Bock, Hannes, Hilbert, Michael, Schilde, Jessica, Schönle, Andreas, Eggeling, Christian, Egner, Alexander, Hell, Stefan W., Jakobs, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reversibly switchable fluorescent proteins (RSFPs) are GFP-like proteins that may be repeatedly switched by irradiation with light from a fluorescent to a nonfluorescent state, and vice versa. They can be utilized as genetically encodable probes and bear large potential for a wide array of applications, in particular for new protein tracking schemes and subdiffraction resolution microscopy. However, the currently described monomeric RSFPs emit only blue-green or green fluorescence; the spectral window for their use is thus rather limited. Using a semirational engineering approach based on the crystal structure of the monomeric nonswitchable red fluorescent protein mCherry, we generated rsCherry and rsCherryRev. These two novel red fluorescent RSFPs exhibit fluorescence emission maxima at ∼610nm. They display antagonistic switching modes, i.e., in rsCherry irradiation with yellow light induces the off-to-on transition and blue light the on-to-off transition, whereas in rsCherryRev the effects of the switching wavelengths are reversed. We demonstrate time-lapse live-cell subdiffraction microscopy by imaging rsCherryRev targeted to the endoplasmic reticulum utilizing the switching and localization of single molecules.
ISSN:0006-3495
1542-0086
DOI:10.1529/biophysj.108.130146