The Influence of Macromolecular Crowding on HIV-1 Protease Internal Dynamics
High macromolecular concentrations, or crowded conditions, have been shown to affect a wide variety of molecular processes, including diffusion, association and dissociation, and protein folding and stability. Here, we model the effect of macromolecular crowding on the internal dynamics of a protein...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2006-05, Vol.128 (18), p.6006-6007 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High macromolecular concentrations, or crowded conditions, have been shown to affect a wide variety of molecular processes, including diffusion, association and dissociation, and protein folding and stability. Here, we model the effect of macromolecular crowding on the internal dynamics of a protein, HIV-1 protease, using Brownian dynamics simulations. HIV-1 protease possesses a pair of flaps which are postulated to open in the early stages of its catalytic mechanism. Compared to low concentrations, close-packed concentrations of repulsive crowding agents are found to significantly reduce the fraction of time that the protease flaps are open. Macromolecular crowding is likely to have a major effect on in vivo enzyme activity, and may play an important regulatory role in the viral life cycle. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja060483s |