Crystal Structure of a Dimerized Cockroach Allergen Bla g 2 Complexed with a Monoclonal Antibody

The crystal structure of a 1:1 complex between the German cockroach allergen Bla g 2 and the Fab′ fragment of a monoclonal antibody 7C11 was solved at 2.8-Å resolution. Bla g 2 binds to the antibody through four loops that include residues 60-70, 83-86, 98-100, and 129-132. Cation-π interactions exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-08, Vol.283 (33), p.22806-22814
Hauptverfasser: Li, Mi, Gustchina, Alla, Alexandratos, Jerry, Wlodawer, Alexander, Wünschmann, Sabina, Kepley, Christopher L., Chapman, Martin D., Pomés, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The crystal structure of a 1:1 complex between the German cockroach allergen Bla g 2 and the Fab′ fragment of a monoclonal antibody 7C11 was solved at 2.8-Å resolution. Bla g 2 binds to the antibody through four loops that include residues 60-70, 83-86, 98-100, and 129-132. Cation-π interactions exist between Lys-65, Arg-83, and Lys-132 in Bla g 2 and several tyrosines in 7C11. In the complex with Fab′, Bla g 2 forms a dimer, which is stabilized by a quasi-four-helix bundle comprised of an α-helix and a helical turn from each allergen monomer, exhibiting a novel dimerization mode for an aspartic protease. A disulfide bridge between C51a and C113, unique to the aspartic protease family, connects the two helical elements within each Bla g 2 monomer, thus facilitating formation of the bundle. Mutation of these cysteines, as well as the residues Asn-52, Gln-110, and Ile-114, involved in hydrophobic interactions within the bundle, resulted in a protein that did not dimerize. The mutant proteins induced less β-hexosaminidase release from mast cells than the wild-type Bla g 2, suggesting a functional role of dimerization in allergenicity. Because 7C11 shares a binding epitope with IgE, the information gained by analysis of the crystal structure of its complex provided guidance for site-directed mutagenesis of the allergen epitope. We have now identified key residues involved in IgE antibody binding; this information will be useful for the design of vaccines for immunotherapy.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M800937200