Microtubule Release from the Centrosome

Although microtubules (MTs) are generally thought to originate at the centrosome, a number of cell types have significant populations of MTs with no apparent centrosomal connection. The origin of these noncentrosomal MTs has been unclear. We applied kinetic analysis of MT formation in vivo to establ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1997-05, Vol.94 (10), p.5078-5083
Hauptverfasser: Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D., Borisy, G. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although microtubules (MTs) are generally thought to originate at the centrosome, a number of cell types have significant populations of MTs with no apparent centrosomal connection. The origin of these noncentrosomal MTs has been unclear. We applied kinetic analysis of MT formation in vivo to establish their mode of origin. Time-lapse fluorescence microscopy demonstrated that noncentrosomal MTs in cultured epithelial cells arise primarily by constitutive nucleation at, and release from, the centrosome. After release, MTs moved away from the centrosome and tended to depolymerize. Laser-marking experiments demonstrated that released MTs moved individually with their plus ends leading, suggesting that they were transported by minus end-directed motors. Released MTs were dynamic. The laser marking experiments demonstrated that plus ends of released MTs grew, paused, or shortened while the minus ends were stable or shortened. Microtubule release may serve two kinds of cellular function. Release and transport could generate the noncentrosomal MT arrays observed in epithelial cells, neurons, and other asymmetric, differentiated cells. Release would also contribute to polymer turnover by exposing MT minus ends, thereby providing additional sites for loss of subunits. The noncentrosomal population of MTs may reflect a steady-state of centrosomal nucleation, release, and dynamics.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.94.10.5078