Identification of Tyrosine Residues on ELMO1 That Are Phosphorylated by the Src-Family Kinase Hck

The SH3 and SH2 domains of hematopoietic cell kinase (Hck) play important roles in substrate targeting. To identify new components of Hck signaling pathways, we identified proteins that bind to the SH3 domain of Hck (Scott et al. (2002) J. Biol. Chem. 277, 28238). One such protein was ELMO1, the mam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2005-06, Vol.44 (24), p.8841-8849
Hauptverfasser: Yokoyama, Noriko, deBakker, Colin D, Zappacosta, Francesca, Huddleston, Michael J, Annan, Roland S, Ravichandran, Kodi S, Miller, W. Todd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The SH3 and SH2 domains of hematopoietic cell kinase (Hck) play important roles in substrate targeting. To identify new components of Hck signaling pathways, we identified proteins that bind to the SH3 domain of Hck (Scott et al. (2002) J. Biol. Chem. 277, 28238). One such protein was ELMO1, the mammalian orthologue of the Caenorhabditis elegans gene, ced-12. ELMO1 is an ≈80-kD protein containing a PH domain and a C-terminal Pro-rich sequence. In C. elegans, ced-12 is required for the engulfment of dying cells and for cell migration. In mammalian fibroblasts, ELMO1 binds to Dock180, and functions upstream of Rac during phagocytosis and cell migration. We previously showed that ELMO1 binds directly to the Hck SH3 domain and is phosphorylated by Hck. In this study, we used mass spectrometry to identify the following sites of ELMO1 phosphorylation:  Tyr 18, Tyr 216, Tyr 511, Tyr 395, and Tyr 720. Mutant forms of ELMO1 lacking these sites were defective in their ability to promote phagocytosis and migration in fibroblasts. Single tyrosine mutations showed that Tyr 511 is particularly important in mediating these biological effects. These mutants displayed comparable binding to Dock180 and Crk as wild-type ELMO1, but gave a lowered activation of Rac. The data suggest that Src family kinase mediated tyrosine phosphorylation of ELMO1 might represent an important regulatory mechanism that controls signaling through the ELMO1/Crk/Dock180 pathway.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi0500832