What the Bat's Voice Tells the Bat's Brain
For over half a century, the echolocating bat has served as a valuable model in neuroscience to elucidate mechanisms of auditory processing and adaptive behavior in biological sonar. Our article emphasizes the importance of the bat's vocal-motor system to spatial orientation by sonar, and we pr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-06, Vol.105 (25), p.8491-8498 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For over half a century, the echolocating bat has served as a valuable model in neuroscience to elucidate mechanisms of auditory processing and adaptive behavior in biological sonar. Our article emphasizes the importance of the bat's vocal-motor system to spatial orientation by sonar, and we present this view in the context of three problems that the echolocating bat must solve: (i) auditory scene analysis, (ii) sensorimotor transformations, and (iii) spatial memory and navigation. We summarize our research findings from behavioral studies of echolocating bats engaged in natural tasks and from neurophysiological studies of the bat superior colliculus and hippocampus, brain structures implicated in sensorimotor integration, orientation, and spatial memory. Our perspective is that studies of neural activity in freely vocalizing bats engaged in natural behaviors will prove essential to advancing a deeper understanding of the mechanisms underlying perception and memory in mammals. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0703550105 |