Amino Acids Important for DNA Recognition by the Response Regulator OmpRS

Response regulators undergo regulated phosphorylation and dephosphorylation at conserved aspartic acid residues in bacterial signal transduction systems. OmpR is a winged helix-turnhelix DNA-binding protein that functions as a global regulator in bacteria and is also important in pathogenesis. A det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-03, Vol.283 (13), p.8664-8677
Hauptverfasser: Rhee, Jee Eun, Sheng, Wanyun, Morgan, Leslie K., Nolet, Ryan, Liao, Xiubei, Kenney, Linda J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Response regulators undergo regulated phosphorylation and dephosphorylation at conserved aspartic acid residues in bacterial signal transduction systems. OmpR is a winged helix-turnhelix DNA-binding protein that functions as a global regulator in bacteria and is also important in pathogenesis. A detailed mechanistic picture of how OmpR binds to DNA and activates transcription is lacking. We used NMR spectroscopy to solve the solution structure of the C-terminal domain of OmpR (OmpR C ) and to analyze the chemical shift changes that occur upon DNA binding. There is little overlap in the interaction surface with residues of PhoB that were reportedly involved in protein/protein interactions in its head-to-tail dimer. Multiple factors account for the lack of overlap. One is that the spacing between the OmpR half-sites is shorter than observed with PhoB, requiring the arrangement of the two OmpR molecules to be different from that of the PhoB dimer on DNA. A second is the demonstration herein that OmpR can bind to its high affinity site as a monomer. As a result, OmpR C appears to be capable of adopting alternative orientations depending on the precise base composition of the binding site, which also contributes to the lack of overlap. In the presence of DNA, chemical shift changes occur in OmpR in the recognition α-helix 3, the loop between β-strand 4 and α-helix 1, and the loop between β-strands 5 and 6. DNA contact residues are Val 203 (T), Arg 207 (G), and Arg 209 (phosphate backbone). Our results suggest that OmpR binds to DNA as a monomer and then forms a symmetric or asymmetric dimer, depending on the binding site. We propose that during activation OmpR binds to DNA and undergoes a conformational change that promotes phosphorylation of the N-terminal receiver domain, the receiver domains dimerize, and then the second monomer binds to DNA. The flexible linker of OmpR enables the second monomer to bind in multiple orientations (head-to-tail and head-to-head), depending on the specific DNA contacts.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M705550200