Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron

RNA interference (RNAi) is a powerful approach to inhibit human immunodeficiency virus type 1 (HIV-1) replication. However, HIV-1 can escape from RNAi-mediated antiviral therapy by selection of mutations in the targeted sequence. To prevent viral escape, multiple small interfering RNAs (siRNAs) agai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2008-05, Vol.36 (9), p.2811-2824
Hauptverfasser: Liu, Ying Poi, Haasnoot, Joost, ter Brake, Olivier, Berkhout, Ben, Konstantinova, Pavlina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA interference (RNAi) is a powerful approach to inhibit human immunodeficiency virus type 1 (HIV-1) replication. However, HIV-1 can escape from RNAi-mediated antiviral therapy by selection of mutations in the targeted sequence. To prevent viral escape, multiple small interfering RNAs (siRNAs) against conserved viral sequences should be combined. Ideally, these RNA inhibitors should be expressed simultaneously from a single transgene transcript. In this study, we tested a multiplex microRNA (miRNA) expression strategy by inserting multiple effective anti-HIV siRNA sequences in the miRNA polycistron mir-17-92. Individual anti-HIV miRNAs that resemble the natural miRNA structures were optimized by varying the siRNA position in the hairpin stem to obtain maximal effectiveness against luciferase reporters and HIV-1. We show that an antiviral miRNA construct can have a greater intrinsic inhibitory activity than a conventional short hairpin (shRNA) construct. When combined in a polycistron setting, the silencing activity of an individual miRNA is strongly boosted. We demonstrate that HIV-1 replication can be efficiently inhibited by simultaneous expression of four antiviral siRNAs from the polycistronic miRNA transcript. These combined results indicate that a multiplex miRNA strategy may be a promising therapeutic approach to attack escape-prone viral pathogens.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkn109