Probabilistic Latent Variable Models as Nonnegative Factorizations

This paper presents a family of probabilistic latent variable models that can be used for analysis of nonnegative data. We show that there are strong ties between nonnegative matrix factorization and this family, and provide some straightforward extensions which can help in dealing with shift invari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Intelligence and Neuroscience 2008, Vol.2008 (2008), p.153-160
Hauptverfasser: Shashanka, Madhusudana, Raj, Bhiksha, Smaragdis, Paris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a family of probabilistic latent variable models that can be used for analysis of nonnegative data. We show that there are strong ties between nonnegative matrix factorization and this family, and provide some straightforward extensions which can help in dealing with shift invariances, higher-order decompositions and sparsity constraints. We argue through these extensions that the use of this approach allows for rapid development of complex statistical models for analyzing nonnegative data.
ISSN:1687-5265
1687-5273
DOI:10.1155/2008/947438