Influence of Uncertainty and Surprise on Human Corticospinal Excitability during Preparation for Action

Actions are guided by prior sensory information [1–10], which is inherently uncertain. However, how the motor system is sculpted by trial-by-trial content of current sensory information remains largely unexplored. Previous work suggests that conditional probabilities, learned under a particular cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2008-05, Vol.18 (10), p.775-780
Hauptverfasser: Bestmann, Sven, Harrison, Lee M., Blankenburg, Felix, Mars, Rogier B., Haggard, Patrick, Friston, Karl J., Rothwell, John C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Actions are guided by prior sensory information [1–10], which is inherently uncertain. However, how the motor system is sculpted by trial-by-trial content of current sensory information remains largely unexplored. Previous work suggests that conditional probabilities, learned under a particular context, can be used preemptively to influence the output of the motor system [11–14]. To test this we used transcranial magnetic stimulation (TMS) to read out corticospinal excitability (CSE) during preparation for action in an instructed delay task [15, 16]. We systematically varied the uncertainty about an impending action by changing the validity of the instructive visual cue. We used two information-theoretic quantities to predict changes in CSE, prior to action, on a trial-by-trial basis: entropy (average uncertainty) and surprise (the stimulus-bound information conveyed by a visual cue) [17–19]. Our data show that during preparation for action, human CSE varies according to the entropy and surprise conveyed by visual events guiding action. CSE increases on trials with low entropy about the impending action and low surprise conveyed by an event. Commensurate effects were observed in reaction times. We suggest that motor output is biased according to contextual probabilities that are represented dynamically in the brain.
ISSN:0960-9822
1879-0445
DOI:10.1016/j.cub.2008.04.051