Apoptotic mechanisms in T47D and MCF-7 human breast cancer cells
To investigate the mechanisms underlying apoptosis in breast cancer cells, staurosporine was used as an apoptotic stimulus in the human breast cancer cell lines MCF-7 and T47D. Staurosporine induced dose and time dependent increases in DNA fragmentation which was abrogated by z-VAD-fmk. MCF-7 cells...
Gespeichert in:
Veröffentlicht in: | British journal of cancer 2002-10, Vol.87 (8), p.909-917 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To investigate the mechanisms underlying apoptosis in breast cancer cells, staurosporine was used as an apoptotic stimulus in the human breast cancer cell lines MCF-7 and T47D. Staurosporine induced dose and time dependent increases in DNA fragmentation which was abrogated by z-VAD-fmk. MCF-7 cells did not express caspase-3, suggesting that DNA fragmentation occurred in the absence of caspase-3 and that other caspases may be involved. Staurosporine induced DEVDase activity in T47D cells suggesting the involvement of caspase-3 and/or caspase-7, yet there was no DEVDase activity in MCF-7 cells, probably ruling out the involvement caspase-7. However, staurosporine induced the cleavage of pro-caspase-6 in MCF-7 cells, but not in T47D cells. Caspase dependent PARP cleavage was detected in MCF-7 cells at 3 h, whereas only partial PARP cleavage was detected in T47D cells and then only after 24 h. Moreover, staurosporine led to cytochrome
c
release at 2 h in MCF-7 cells and 6 h in T47D cells. In addition, a time dependent and caspase-independent reduction of the mitochondrial transmembrane potential was observed; which appeared to occur after the release of cytochrome
c
. Translocation of Bax from the cytosol to mitochondria was observed in both cell types, and this preceded cytochrome
c
release in both T47D and MCF-7 cells. Apoptotic events in both cell types differ temporally, involving activation of different caspases and mitochondrial changes. |
---|---|
ISSN: | 0007-0920 1532-1827 |
DOI: | 10.1038/sj.bjc.6600541 |