TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones

TRESK (TWIK-related spinal cord K + channel) is the most recently identified member of the two-pore-domain potassium channel (K 2P ) family, the molecular source of background potassium currents. Human TRESK channels are not affected by external acidification. However, the mouse orthologue displays...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2007-12, Vol.585 (3), p.867-879
Hauptverfasser: Dobler, Tina, Springauf, Andreas, Tovornik, Stefanie, Weber, Maruschka, Schmitt, Angelika, Sedlmeier, Reinhard, Wischmeyer, Erhard, Döring, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TRESK (TWIK-related spinal cord K + channel) is the most recently identified member of the two-pore-domain potassium channel (K 2P ) family, the molecular source of background potassium currents. Human TRESK channels are not affected by external acidification. However, the mouse orthologue displays moderate pH dependence isolated to a single histidine residue adjacent to the GYG selectivity filter. In the human protein, sequence substitution of tyrosine by histidine at this critical position generated a mutant that displays almost identical proton sensitivity compared with mouse TRESK. In contrast to human TRESK, which is specifically located in spinal cord, we detected mouse TRESK (mTRESK) mRNA in several epithelial and neuronal tissues including lung, liver, kidney, brain and spinal cord. As revealed by endpoint and quantitative RT-PCR, mTRESK channels are mainly expressed in dorsal root ganglia (DRG) and on the transcript level represent the most important background potassium channel in this tissue. DRG neurones of all sizes were labelled by in situ hybridizations with TRESK-specific probes. In DRG neurones of TRESK[G339R] functional knock-out (KO) mice the standing outward current IK so was significantly reduced compared with TRESK wild-type (WT) littermates. Different responses to K 2P channel regulators such as bupivacaine, extracellular protons and quinidine corroborated the finding that approximately 20% of IK so is carried by TRESK channels. Unexpectedly, we found no difference in resting membrane potential between DRG neurones of TRESK[WT] and TRESK[G339R] functional KO mice. However, in current-clamp recordings we observed significant changes in action potential duration and amplitude of after-hyperpolarization. Most strikingly, cellular excitability of DRG neurones from functional KO mice was significantly augmented as revealed by reduced rheobase current to elicit action potentials.
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.2007.145649