Definition of the tempo of sequence diversity across an alignment and automatic identification of sequence motifs: Application to protein homologous families and superfamilies

It is often possible to identify sequence motifs that characterize a protein family in terms of its fold and/or function from aligned protein sequences. Such motifs can be used to search for new family members. Partitioning of sequence alignments into regions of similar amino acid variability is usu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2002-12, Vol.11 (12), p.2825-2835
1. Verfasser: May, Alex C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is often possible to identify sequence motifs that characterize a protein family in terms of its fold and/or function from aligned protein sequences. Such motifs can be used to search for new family members. Partitioning of sequence alignments into regions of similar amino acid variability is usually done by hand. Here, I present a completely automatic method for this purpose: one that is guaranteed to produce globally optimal solutions at all levels of partition granularity. The method is used to compare the tempo of sequence diversity across reliable three‐dimensional (3D) structure‐based alignments of 209 protein families (HOMSTRAD) and that for 69 superfamilies (CAMPASS). (The mean alignment length for HOMSTRAD and CAMPASS are very similar.) Surprisingly, the optimal segmentation distributions for the closely related proteins and distantly related ones are found to be very similar. Also, optimal segmentation identifies an unusual protein superfamily. Finally, protein 3D structure clues from the tempo of sequence diversity across alignments are examined. The method is general, and could be applied to any area of comparative biological sequence and 3D structure analysis where the constraint of the inherent linear organization of the data imposes an ordering on the set of objects to be clustered.
ISSN:0961-8368
1469-896X
DOI:10.1110/ps.0211202