Gene delivery to hypoxic cells in vitro

Hypoxia in solid tumours has been correlated with poor prognosis and resistance to radiation and chemotherapy. Hypoxia is also a strong stimulus for gene expression. We previously proposed a gene therapy approach which exploits the presence of severe hypoxia in tumours for the induction of therapeut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of cancer 2000-09, Vol.83 (5), p.662-667
Hauptverfasser: Dachs, G U, Coralli, C, Hart, S L, Tozer, G M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypoxia in solid tumours has been correlated with poor prognosis and resistance to radiation and chemotherapy. Hypoxia is also a strong stimulus for gene expression. We previously proposed a gene therapy approach which exploits the presence of severe hypoxia in tumours for the induction of therapeutic genes. Hypoxic cells are known to have a reduced metabolic rate, transcription and translation. These facts may prevent gene transfer and therefore warranted further investigation. In this paper the feasibility of gene delivery in vitro under tumour conditions was demonstrated. DNA was delivered in vitro using a peptide-mediated non-viral system. Across a range of oxygen tensions and mammalian cell lines (including human tumour and endothelial cells) it was shown that hypoxic cells could be transfected. Transfection efficiencies varied depending on the level of hypoxia, cell characteristics and gene promoters used. An in vitro model of hypoxia/reoxygenation, designed to mimic the variable nature of tumour hypoxia, showed that hypoxic preconditioning and reoxygenation alone did not reduce transfection efficiency significantly; only chronic anoxia reduced transfection. The fact that neither intermediate hypoxia nor intermittent anoxia significantly reduced transfection is promising for future hypoxia-targeted gene therapy strategies. © 2000 Cancer Research Campaign
ISSN:0007-0920
1532-1827
DOI:10.1054/bjoc.2000.1318