A novel signalling pathway originating in mitochondria modulates rat skeletal muscle membrane excitability
Single skeletal muscle fibres from rat and cane toad were mechanically skinned and stimulated either electrically by initiating action potentials in the sealed transverse (t-) tubular system or by ion substitution causing depolarisation of the t-system to pre-determined levels. Depression of mitocho...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2003-04, Vol.548 (1), p.139-145 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single skeletal muscle fibres from rat and cane toad were mechanically skinned and stimulated either electrically by initiating
action potentials in the sealed transverse (t-) tubular system or by ion substitution causing depolarisation of the t-system
to pre-determined levels. Depression of mitochondrial ATP-producing function with three diverse mitochondrial function antagonists
(azide: 1â10 m m ; oligomycin 1 μg ml â1 and carbonyl cyanide 4-trifluoromethoxyphenylhydrazone (FCCP) 1 μ m ), under conditions in which the cytosolic ATP was maintained high and constant, invariably reduced the excitability of rat
fibres but had no obvious effect on the excitability of toad fibres, where mitochondria are less abundant and differently
located. The reduction in excitability linked to mitochondria in rat fibres appears to be caused by depolarisation of the
sealed t-system membrane. These observations suggest that mitochondria can regulate the functional state of mammalian muscle
cells and have important implications for understanding how the balance between ATP utilisation and ATP production is regulated
at the cellular level in general and in mammalian skeletal muscle fibres in particular. |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.2002.036657 |