Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits

Reproducing kernel Hilbert spaces regression procedures for prediction of total genetic value for quantitative traits, which make use of phenotypic and genomic data simultaneously, are discussed from a theoretical perspective. It is argued that a nonparametric treatment may be needed for capturing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2008-04, Vol.178 (4), p.2289-2303
Hauptverfasser: Gianola, D, Kaam, J.B.C.H.M. van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reproducing kernel Hilbert spaces regression procedures for prediction of total genetic value for quantitative traits, which make use of phenotypic and genomic data simultaneously, are discussed from a theoretical perspective. It is argued that a nonparametric treatment may be needed for capturing the multiple and complex interactions potentially arising in whole-genome models, i.e., those based on thousands of single-nucleotide polymorphism (SNP) markers. After a review of reproducing kernel Hilbert spaces regression, it is shown that the statistical specification admits a standard mixed-effects linear model representation, with smoothing parameters treated as variance components. Models for capturing different forms of interaction, e.g., chromosome-specific, are presented. Implementations can be carried out using software for likelihood-based or Bayesian inference.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1534/genetics.107.084285