Galectin-3 Expression and Secretion Links Macrophages to the Promotion of Renal Fibrosis

Macrophages have been proposed as a key cell type in the pathogenesis of renal fibrosis; however, the mechanism by which macrophages drive fibrosis is still unclear. We show that expression of galectin-3, a β-galactoside-binding lectin, is up-regulated in a mouse model of progressive renal fibrosis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2008-02, Vol.172 (2), p.288-298
Hauptverfasser: Henderson, Neil C, Mackinnon, Alison C, Farnworth, Sarah L, Kipari, Tiina, Haslett, Christopher, Iredale, John P, Liu, Fu-Tong, Hughes, Jeremy, Sethi, Tariq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macrophages have been proposed as a key cell type in the pathogenesis of renal fibrosis; however, the mechanism by which macrophages drive fibrosis is still unclear. We show that expression of galectin-3, a β-galactoside-binding lectin, is up-regulated in a mouse model of progressive renal fibrosis (unilateral ureteric obstruction, UUO), and absence of galectin-3 protects against renal myofibroblast accumulation/activation and fibrosis. Furthermore, specific depletion of macrophages using CD11b-DTR mice reduces fibrosis severity after UUO demonstrating that macrophages are key cells in the pathogenesis of renal fibrosis. Disruption of the galectin-3 gene does not affect macrophage recruitment after UUO, or macrophage proinflammatory cytokine profiles in response to interferon-γ/lipopolysaccharide. In addition, absence of galectin-3 does not affect transforming growth factor-β expression or Smad 2/3 phosphorylation in obstructed kidneys. Adoptive transfer of wild-type but not galectin-3−/− macrophages did, however, restore the fibrotic phenotype in galectin-3−/− mice. Cross-over experiments using wild-type and galectin-3−/− macrophage supernatants and renal fibroblasts confirmed that secretion of galectin-3 by macrophages is critical in the activation of renal fibroblasts to a profibrotic phenotype. Therefore, we demonstrate for the first time that galectin-3 expression and secretion by macrophages is a major mechanism linking macrophages to the promotion of renal fibrosis.
ISSN:0002-9440
1525-2191
DOI:10.2353/ajpath.2008.070726