The use of physician domain knowledge to improve the learning of rule-based models for decision-support
This paper describes a study testing the hypothesis that the learning of a decision-support model by a computer learning algorithm from clinical data can be improved by the addition of domain knowledge from practicing physicians. The domain of the experiment is community-acquired pneumonia. The over...
Gespeichert in:
Veröffentlicht in: | Proceedings - AMIA Symposium 1999, p.192-196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes a study testing the hypothesis that the learning of a decision-support model by a computer learning algorithm from clinical data can be improved by the addition of domain knowledge from practicing physicians. The domain of the experiment is community-acquired pneumonia. The overall design of the study compares a computer learning algorithm given clinical data to one given clinical data plus domain knowledge added by physician subjects. This study showed that the performance of the computer-generated models augmented with knowledge added by physician subjects were significantly better than the computer-generated models generated without added knowledge using a two-stage rule induction algorithm in the domain of community-acquired pneumonia. This result was highly significant and shows that the addition of domain knowledge may be beneficial to the learning of clinical decision-support models, especially in domains where data is limited. |
---|---|
ISSN: | 1531-605X |